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11 Introduction

For the nineteenth century physicists, gravity was the only conceivable source of en-
ergy in celestial bodies, but gravity was inadequate to power the Sun for its known
lifetime. In contrast, at the beginning of the twenty-first century it is to gravity that
we look to power the most luminous objects in the Universe, for which the nuclear
sources of the stars are wholly inadequate. The extraction of gravitational potential
energy from material which accretes on to a gravitating body is now known to be
the principal source of power in several types of close binary systems, and is widely
believed to provide the power supply in active galactic nuclei and quasars. This in-
creasing recognition of the importance of accretion has accompanied the dramatic
expansion of observational techniques in astronomy, in particular the exploitation of
the full range of the electromagnetic spectrum from the radio to X-rays and v-rays.
At the same time, the existence of compact objects has been placed beyond doubt
by the discovery of the pulsars, and black holes have been given a sound theoretical
status. Thus, the new role for gravity arises because accretion on to compact objects
is a natural and powerful mechanism for producing high-energy radiation.

Some simple order-of-magnitude estimates will show how this works. For a body of
mass M and radius R, the gravitational potential energy released by the accretion of
a mass m on to its surface is
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ABaco = GMm/R. (1.1)

where G is the gravitation constant. If the accreting body is & neutron star with
radius R, ~ 10km, mass M ~ My, the solar mass, then the yield AE, . is about
10% erg per accreted gram. We would expect this energy to be released eventually
mainly in the form of electromagnetic radiation. For comparison, consider the energy
that could be extracted from the mass m by nuclear fusion reactions. The maximum
is obtained if, as is usually the case in astrophysics, the material is initially hydrogen,
and the major contribution comes from the conversion, (or ‘burning’), of hydrogen to
helium. This yields an energy release

AEp, = 0.007mc? (1.2)

where ¢ is the speed of light, so we obtain about 6 x 108 erg g~! or about one twentieth
of the accretion yield in this case.
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It is clear from the form of equation (1.1) that the efficiency of accretion as an energy
release mechanism is strongly dependent on the compactness of the accreting object:
the larger the ratio M/R,, the greater the efficiency. Thus, in treating accretion on to
objects of stellar mass we shall certainly want to consider neutron stars (R, ~ 10 km)
and black holes with radii R, ~ 2GM/c? ~ 3(M/Mg) km (see Section 7.7). For
white dwarfs with M ~ Mg, R« ~ 10° cm, nuclear burning is more efficient than
accretion by factors 25-50. However, it would be wrong to conclude that accretion on
to white dwarfs is of no great importance for observations, since the argument takes no
account of the timescale over which the nuclear and accretion processes act. In fact,
when nuclear burning does occur on the surface of a white dwarf, it is likely that the
reaction tends to ‘run away’ to produce an event of great brightness but short duration,
a. nova outburst, in which the available nuclear fuel is very rapidly exhausted. For
almost all of its lifetime no nuclear burning occurs, and the white dwarf (may) derive its
entire luminosity from accretion. Binary systems in which a white dwarf accretes from
a close companion star are known as cataclysmic variables and are quite common in
the Galaxy. Their importance derives partly from the fact that they provide probably
the best opportunity to study the accretion process in isolation, since other sources of
luminosity, in particular the companion star, are relatively unimportant.

For accretion on to a ‘normal’, less compact, star, such as the Sun, the accretion
yield is smaller than the potential nuclear yield by a factor of several thousand. Even
s0, accretion on to such stars may be of observational importance. For example, a
binary system containing an accreting main-sequence star has been proposed as a
model for the so-called symbiotic stars.

For a fixed value of the compactness, M/R,, the luminosity of an accreting system
depends on the rate M at which matter is accreted. At high luminosities, the accretion
rate may itself be controlled by the outward momentum transferred from the radiation
to the accreting material by scattering and absorption. Under certain circumstances,
this can lead to the existence of a maximum luminosity for a given mass, usually
referred to as the Eddington luminosity, which we discuss next.

1.2  The Eddington limit

Consider a steady spherically symmetrical accretion; the limit so derived will be gen-
erally applicable as an order-of-magnitude estimate. We assume thé accreting ma-
terial to be mainly hydrogen and to be fully ionized. Under these circumstances,
the radiation exerts a force mainly on the free electrons through Thomson scatter-
ing, since the scattering cross-section for protons is a factor (me/mp)? smaller, where
me/mp & 5 x 107* is the ratio of the electron and proton masses. If S is the ra-
diant energy flux (erg s~'cm™2) and op = 6.7 x 10725 cm? is the Thomson cross-
section, then the outward radial force on each electron equals the rate at which it
absorbs momentum, orS/c. If there is a substantial population of elements other
than hydrogen, which have retained some bound electrons, the effective cross-section,
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1.2 The Eddington limit : 3

resulting from the absorption of photons in spectral lines, can exceed o consider-
ably. The attractive electrostatic Coulomb force between the electrons and protons
means that as they move out the electrons drag the protons with them. In effect,
the radiation pushes out electron—proton pairs against the total gravitational force
GM(myp + me)/r* =2 GMmy,/r? acting on each pair at a radial distance r from the
centre. If the luminosity of the accreting source is L(erg s~*), we have S = L/4nr?
by spherical symmetry, so the net inward force on an electron-proton pair is

(GMmp — LUT) !

dmc ) 2
There is a limiting luminosity for which this expression vanishes, the Eddington limit,

4rGMmpe/oT
1.3 x 103 (M/Mg) erg s *.

(1.3)
(1.4)

Lgaq

14

At greater luminosities the outward pressure of radiation would exceed the inward
gravitational attraction and accretion would be halted. If all the luminosity of the
source were derived from accretion this would switch off the source; if some, or all, of
it were produced by other means, for example nuclear burning, then the outer layers
of material would begin to be blown off and the source would not be steady. For stars

" with a given mass—luminosity relation this argument yields a maximum stable mass.

Since Lgaq will figure prominently later, it is worth recalling the assumptions made
in deriving expressions (1.3,1.4). We assumed that the accretion flow was steady and
spherically symmetric. A slight extension can be made here without difficulty: if the
accretion occurs only over a fraction f of the surface of a star, but is otherwise de-
pendent only on radial distance r, the corresponding limit on the accretion luminosity
is fLgaq. For a more complicated geometry, however, we cannot expect (1.3,1.4) to
provide more than a crude estimate. Even more crucial was the restriction to steady
flow. A dramatic illustration of this is provided by supernovae, in which Lgqq is
exceeded by many orders of magnitude. Our other main assumptions were that the
accreting material was largely hydrogen and that it was fully ionized. The former is
almost always a good approximation, but even a small admixture of heavy elements
can invalidate the latter. Almost complete ionization is likely to be justified however
in the very common case where the accreting object produces much of its luminosity
in the form of X-rays, because the abundant ions can usually be kept fully stripped of
electrons by a very small fraction of the X-ray luminosity. Despite these caveats, the
Eddington limit is of great practical importance, in particular because certain types of
system show a tendency to behave as ‘standard candles’ in the sense that their typical
luminosities are close to their Eddington limits. )

For accretion powered objects the Eddington limit implies a limit on the steady
accretion rate, M(g s™1). If all the kinetic energy of infalling matter is given up to
radiation at the stellar surface, R, then from (1.1) the accretion luminosity is

Loce = GMM/R.,. (1.5)
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1t is useful to re-express (1.5) in terms of typical orders of magnitude: writing the

accretion rate as M = 106 Mg g s—! we have
Loce = 1.3 x10%M(M/Mg)(10°cm/R,)erg s™* (1.6)
= 1.3 x 103 M6(M/Mp)(10km/R,) erg s*. (1.7)

The reason for rewriting (1.5) in this way is that the quantities (M/Mg),
(10°cm/R,) and (M/Mg), (10 km/R,) are of order unity for white dwarfs and neu-
tron stars respectively. Since 106 g s™%(~ 1.5 x 10719My yr~!) is a typical order of
magnitude for accretion rates in close binary systems involving these types of star, we
have Mg ~ 1 in (1.6,1.7), and the luminosities 10%% erg s™%, 1036 erg s* represent
values commonly found in such systems. Further, by comparison with (1.4) it is im-
mediately seen that for steady accretion Mg is limited by the values ~ 10° and 102
respectively. Thus, accretion rates must be less than about 10%! g s™! and 10*® g s™*
in the two types of system if the assumptions involved in deriving the Eddington limit
are valid. :

For the case of accretion on to a black hole it is far from clear that (1.5) holds. Since
the radius does not refer to a hard surface but only to a region into which matter can
fall and from which it cannot escape, much of the accretion energy could disappear
into the holeé and simply add to its mass, rather than be radiated. The uncertainty in
this case can be parametrized by the introduction of a dimensionless quantity 7, the
efficiency, on the right hand side of (1.5):

Lace = 20GMM/R, (1.8)
= nMJ (1.9)

where we have used R, = 2GM/c? for the black hole radius. Equation (1.9) shows
that 7 measures how efficiently the rest mass energy, ¢ per unit mass, of the accreted

material is converted into radiation. Comparing (1.9) with (1.2) we see that n = 0.007 -

for the burning of hydrogen to helium. If the material accreting on to a black hole
could be lowered into the hole infinitesimally slowly - scarcely a practical proposition -
all of the rest mass energy could, in principle, be extracted and we should have n = 1.
As we shall see in Chapter 7 the estimation of realistic values for n is an important
problem. A reasonable guess would appear to be n ~ 0.1, comparable to the value
1 ~ 0.15 obtained from (1.8) for a solar mass neutron star. Thus, despite its extra
compactness, a stellar mass black hole may be no more efficient in the conversion of
gravitational potential energy to radiation than a neutron star of similar mass.

As a final illustration here of the use of the Eddington limit we consider the nuclei
of active galaxies and the closely related quasars. These are probably the least under-
stood class of object for which accretion is thought to be the ultimate source of energy.
The main reason for this belief comes from the large luminosities involved: these sys-
tems may reach 10%7 erg s™*, or more, varying by factors of order 2 on timescales of

weeks, or less. With the nuclear burning éfficiency of only 1 = 0.007, the rate at which
mass is processed in the source could exceed 250 Mg yr~!. This is a rather severe
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requirement and it is clearly greatly reduced if accretion with an efficiency n ~ 0.1 is
postulated instead. The accretion rate required is of order 20 Mg yr™?, or less, and
rates approaching this might plausibly be provided by a number of the mechanisms
considered in Chapter 7. If these systems are assumed to radiate at less than the
Eddington limit, then accreting masses exceeding about 10° M are required. White
dwarfs are subject to upper limits-on their masses of 1.4 My and neutron stars can-
not exceed about 3 Mg thus, only massive black holes are plausible candidates for
accreting objects in active galactic nuclei.

1.3  The emitted spectrum

We can now make some order-of-magnitude estimates of the spectral range of the
emission from compact accreting objects,.and, conversely, suggest what type of com-
pact object may be responsible for various observed behaviour. We can characterize
the continuum spectrum of the emitted radiation by a temperature Trag defined such
that the energy of a typical photon, h¥, is of order kT ad, Traa = h¥/k, where we
do not need to make the choice of ¥ precise. For an accretion luminosity L, from
a source of radius R, we define a blackbody temperature T}, as the temperature the
source would have if it were to radiate the given power as a blackbody spectrum:

Ty = (Lae /4w R20)/*. ©(1.10)

Finally, we define a temperature Tin that the accreted material would reach if
its gravitational potential energy were turned- entirely into thermal energy. For
each proton—electron pair accreted, the potential energy released is GM(mp +
me)/Rs &2 GMmy/R., and the thermal energy is 2 x kT therefore

T = GMmy/3kR,. (1.11)

Note that some authors use the related concept of the virial temperature, Tvir = Tth/2,
for a system in mechanical and thermal equilibrium. If the accretion flow is optically
thick, the radiation reaches thermal equilibnum with the accreted material before
leaking out to the observer and Tyaq ~ Tp. On the other hand, if the accretion energy
is converted directly into radiation which escapes without further interaction (i.e. the
intervening material is optically thin), we have Traq ~ Tin. This occurs in certain
types of shock wave that may be produced in some accretion flows and we shall see in
Chapter 3 that (1.11) provides an estimate of the shock temperature for such flows.
In general, the radiation temperature may be expected to lie between the thermal and
blackbody temperatures, and, since the system cannot radiate a given flux at less than
the blackbody temperature, we have

Ty S Trad S Tin-

Of course, these estimates assume that the radiating material can be characterized
by a single temperature. They need not apply, for example, to a non-Maxwellian
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distribution of electrons radiating in a fixed magnetic field, such as we shall meet in
Chapter 9. :

Let us apply the limits (1.10), (1.11) to the case of a solar mass neutron star. The
upper limit (1.11) gives Ty ~ 5.5 x 1011 K, or, in terms of energies, kTt ~50 MeV. To
evaluate the lower limit, T}, from (1.10), we need an idea of the accretion luminosity,
Lycc; but T, is, in fact, very insensitive to the assumed value of L., since it is pro-
portional to the fourth root. Thus we can take Lace ~ Lgaq ~10® erg s~ for a rough
estimate; if, instead, we were to take a typical value ~10% erg s (equation (1.10))
this would change T}, only by a factor of ~ 3. We obtain T}, ~10"K or kT}, ~1 keV,
and so we expect photon energies in the range

1 keV < hv < 50 MeV

as a result of accretion on to neutron stars. Similar results would hold for stellar mass
black holes. Thus we can expect the most luminous accreting neutron star and black
hole binary systems to appear as medium to hard X-ray emitters and possibly as v-
ray sources. There is no difficulty in identifying this class of object with the luminous
galactic X-ray sources discovered by the first satellite X-ray experiments, and added
to by subsequent investigations.

For accreting white dwarfs it is probably more realistic to take Lac. ~1033 erg s~
in estimating Ty, (cf. (1.6)). With M = Mg, R, =5 x 10® cm, we obtain

6 eV S hv <100 keV.

1

Consequently, accreting white dwarfs should be optical, ultraviolet and possibly X-
ray sources. This fits in neatly with our knowledge of cataclysmic variable stars,
which have been found to have strong ultraviolet continua by the Copernicus and
JUE satellite experiments. In addition, some of them are now known to emit a small
fraction of their luminosity as thermal X-ray sources. We shall see that in many ways
cataclysmic variables are particularly useful in providing observational tests of theories
of accretion.

1.4  Accretion theory and observation

So far we have discussed the amount of energy that might be expected by the accretion
process, but we have made no attempt to describe in detail the flow of accreting
matter. A hint that the dynamics of this flow may not be straightforward is provided
by the existence of the Eddington limit, which shows that, at least for high accretion
rates, forces other than gravity can be important. In addition, it will emerge later
that, certainly in many cases and probably in most, the accreting matter possesses
considerable angular momentum per unit mass which, in realistic models, it has to
lose in order to be accreted at all. Furthermore, we need a detailed description of the
accretion flow if we are to explain the observed spectral distribution of the radiation
produced: crudely speaking, in the language of Section 1.3, we want to know whether
Trad is closer to Ty, or Tip.
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The two main tools we shall use in this study are the equations of gas dynamics and
the physics of plasmas. We shall give a brief introduction to gas dynamics in Sections
2.1-2.4 of the next chapter, and treat some aspects of plasma physics in Chapter
3. In addition, the elements of the theory of radiative transfer are summarized in the
Appendix. The reader who is already familiar with these subjects can omit these parts
of the text. The rest of the book divides into three somewhat distinct parts. First, in
Chapters 4 to 6 we consider accretion by stellar mass objects in binary systems. In
these cases, we often find that observations provide fairly direct evidence for the nature
of the systems. For example, there is sometimes direct evidence for the importance
of angular momentum and the existence of accretion discs. This contrasts greatly
with the subsequent discussion of active galactic nuclei in Chapters 7 to 10. Here, the
accretion theory arises at the end of a sequence of plausible, but not unproblematic,
inductions. Furthermore, there appears to be no absolutely compelling evidence for, or
against, the existence of accretion discs in these systems. Thus, whereas we normally
use the observations of stellar systems to test the theory, for active nuclei we use the
theory, to some extent, to illustrate the observations. This is particularly apparent in
the final part of the book, where, in Chapters 9 and 10, we discuss two quite different
models for powering an active nucleus by an accretion disc around a supermassive
black hole. Finally, in Chapter 11 we review all possible accretion flows, most of
which have already been studied in earlier chapters, classifying them according to
which physical effects dominate their properties and behaviour. We also describe in
some detail recent advances in our understanding of accretion flows, with particular
emphasis on the class of advection dominated accretion flows or ADAFs.
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2 Gas dynamics

2.1 Introduction

All accreting matter, like most of the material in the Universe, is in a gaseous form.
This means that the constituent particles, usually free electrons and various species of
ions, interact directly only by collisions, rather than by more complicated short-range
forces. In fact, these collisions involve the electrostatic interaction of the particles
and will be considered in more detail in Chapter 3. On average, a gas particle will
travel a certain distance, the mean free path, A, before changing its state of motion by
colliding with another particle. If the gas is approximately uniform over lengthscales
exceeding a few mean free paths, the effect of all these collisions is to randomize the
particle velocities about some mean velocity, the velocity of the gas, v. Viewed in
a reference frame moving with velocity v, the particles have a Maxwell-Boltzmann
distribution of velocities, and can be described by a temperature T'. Provided we
are interested only in lengthscales L > A we can regard the gas as a continuous
fluid, having velocity v, temperature T and density p defined at each point. We then
study the behaviour of these and other fluid variables as functions of position and
time by imposing the laws of conservation of mass, momentum and energy. This is
the subject of gas dynamics. If we wish to look more closely at the gas, we have to
consider the particle interactions in more detail; this is the domain of plasma physics,
or, more strictly, plasma kinetic theory, about which we shall have something to say in
Chapter 3. Note that the equations of gas dynamics may not always be applicable. For
example, these equations may themselves predict large changes in gas properties over
lengthscales comparable with A; under these circumstances the fluid approximation
is invalid and we must use the deeper but more complicated approach of the plasma
kinetic theory.

22  The equations of gas dynamics

Here we shall write down the three conservation laws of gas dynamics, which, together
with an equation of state and appropriate boundary conditions, describe any gas
dynamical flow. We shall not give the derivations, which can be found in many books,
for example Landau & Lifshitz, 1959, but merely point out the significance of the
various terms. ‘

Given a gas with, as before, a velocity field v, density p and temperature T’ all
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defined as functions of position r and time ¢, conservation of mass is ensured by the
continuity equation:

% +V-(pv) =0. (2.1)
Because of the thermal motion of its particles the gas has a pressure P at each point.
An equation of state relates this pressure to the density and temperature. Astrophys-
ical gases, other than the degenerate gases in white dwarfs and neutron stars and the

cores of ‘normal’ stars, have as equation of state the perfect gas law:
P = pkT/pmy. ' (2.2)

Here myg ~ my, is the mass of the hydrogen atom and y is the mean molecular weight,
which is the mean mass per particle of gas measured in units of my or, equivalently,
the inverse of the number of particlessin a mass my of the gas. Hence, u = 1 for neutral
hydrogen, % for fully ionized hydrogen, and something in between for a mixture of
gases with cosmic abundances, depending on the ionization state.

. Gradients in the pressure in the gas imply forces since momentum is thereby trans-
ferred. Other, as yet unspecified, forces acting on the gases are represented by the
force density, the force per unit volume, f. Conservation of momentum for each gas
element then gives the Fuler equation:

p%—‘t’+pv~VV= —VP+f1. (2.3)
This has the form (mass density) x (acceleration) = (force density) and is, in fact,
simply an expression of Newton’s second law for a continuous fluid. The term ov-Vv
on the left hand side of (2.3) represents the convection of momentum through the
fluid by velocity gradients. The presence of this term means that steady motions
are possible in which the time derivatives of the fluid variables vanish, but v is non-
zero. An example of an external force is gravity: in this case f = —pg, where g is
the local acceleration due to gravity. Another example would be the force due to an
external magnetic field. Further important contributions to f can come from viscosity,
which is the transfer of momentum along velocity gradients by random motions of
the gas, especially turbulence and thermal motions. The inclusion of viscosity usually
considerably complicates the momentum balance equation, so it is fortunate that in
many cases it may be neglected. We anticipate some later results by stating that
viscous effects are chiefly important in flows which show either large shearing motions
or steep velocity gradients. )

The third, and most complicated, conservation law is that of energy. An element
of gas has two forms of energy: an amount % pv? of kinetic energy per unit volume,
and internal or thermal energy pe per unit volume, where ¢, the internal energy per
unit mass, depends on the temperature T' of the gas. According to the equipartition
theorem of elementary kinetic theory, each degree of freedom of each gas particle is
assigned a mean energy %kT. For a monatomic gas the only degrees of freedom are
the three orthogonal directions of translational motion and
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€= ng/umH- (2.4)

Molecular gases have additional internal degrees of freedom of vibration or rotation.

In reality, cosmic gases are not quite monatomic and the effective number of degrees

of freedom is not quite three; but in practice (2.4) is usually a good approximation.
The energy equation for the gas is

%(%pv“ps) +V- [(%Pvz+pE+P>v] =fv-V.Fra~V-q (25)

The left hand side shows a family resemblance to the continuity equation (2.1), with
the expected difference that the conserved quantity p is replaced by (%pv2 + pe).
The last term in the square brackets represents the so-called pressure work. Two
new quantities appear on the right hand side: first, the radiative Aux vector
Froa=/dv f dQnl,(n,r) where I, is the specific intensity of radiation at the point
r in the direction n and the integrals are over frequency v and solid angle (see
the Appendix). The term —V - F,,q gives the rate at which radiant energy is being
lost by emission, or gained by absorption, by unit volume of the gas. In general, the
specific intensity I, is itself governed by a further equation, the conservation of energy
equation for the radiation field. Fortunately, we can often approximate the radiative
losses quite simply. For example, let j, (erg s™* cm™2 sr™!) be the rate of emission
of radiation per unit volume per unit solid angle; j, is the emissivity of the gas and
is usually given as a function of p, T (and v), but might also depend on external
magnetic fields or the radiation field itself (examples are given in the Appendix). If
the gas is optically thin, so that radiation escapes freely once produced and the gas
itself reabsorbs very little, the volume loss is just —V - Fyaq = —47 J judv. For a hot
gas radiating thermal bremsstrahlung (or ‘free—free radiation’), this has the approx-
imate form constant xp*T/2. At the opposite extreme, if the gas is very optically
thick, as in the interior of a star, then F,,q approximates the blackbody flux and
—V - Fyaq is given by the Rosseland approximation Froq = (160 /3krp)T3VT where
KR is a weighted average over frequency of the opacity. This Rosseland approximation
is discussed in any book on stellar structure (see the Appendix).

The second new quantity in the energy equation (2.5) is the conductive flux of heat,
q. This measures the rate at which random motions, chiefly those of electrons, trans-
port thermal energy in the gas and thus act to smooth out temperature differences.
Standard kinetic theory (cf. equation (3.42)), shows that for an ionized gas obeying
the requirement A < T'/|VT|

q=-10"%752yT erg s7! cm™2. (2.6)

(See Section 3.6 for a discussion of transport processes.) Obviously the term —V - q
raises the order of differentiation of T in the energy equation, so it is again fortunate
that, in many cases, temperature gradients are small enough that this term can be
omitted from (2.5).

The system of equations (2.1)-(2.6), supplemented, if necessary, by the radiative
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transfer equation and the specification of f, give, in principle, a complete description
of the behaviour of a gas under appropriate boundary conditions. ‘Of course, in prac-
tice one cannot hope to solve the equations in the fearsome generality in which they
Have been presented here, and all known solutions are either highly specialized or
approximate in some sense. To show how useful information can be extracted from
these equations, we shall discuss a number of simple solutions. Some of these will be
of considerable importance later.

23  Steady adiabatic flows; isothermal flows

~ Let us consider first steady flows, for which time derivatives are put equal to zero,
and let us specialize to the case in which there are no losses through radiation and no
thermal conduction. ’

Our three conservation laws of mass, momentum and energy then become

V- (pv) =0, (2.7
p(v-V)v=—-VP+f,
V. [(—;—pv2+ps+P)v] =f- v. (2.9)

Substituting the first of these equations in the third implies

1
pv-V(5v2+a+P/p> =f-v, (2.10)

while (2.8), the Euler equation, shows that fv = pv(v-V)v + v.VP = pv-(30?)
4+v-VP; hence, eliminating f-v from (2.10) we get

pv-Ve+ Plp)=v-VP,

or, expanding V(P/p) and rearranging, ‘
" v.[Ve+PV(1/p) =0.

By the definition of the gradient operator, this means that, if we travel a small distance
ong a streamline of the gas, i.e. if we follow the velocity v, the increments de and
d(1/ p) in & and 1/p must be related by

de + Pd(1/p) = 0.

‘ But from the expression for the internal energy (2.4) and the perfect gas law (2.2) this
quires that

ng + pTd(1/p) =0,

hich is equivalent to

p‘1T3/ 2 = constant
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Pp~5/% = constant : (2.11)

using (2.2). _

Equation (2.11) describes the so-called adigbatic flows. Although we have demon-
strated only that the combination Pp~5/3 is constant along a given streamline, in
many cases it is assumed that this constant is the same for each streamline, i.e. it is
the same throughout the gas. This condition is equivalent to setting the entropy of
the gas constant. The resulting flows are called isentropic. Note that adiabatic and
isentropic are often used synonymously in the literature.

In a sense, our derivation of the adiabatic law (2.11) is ‘back-to-front’, since ther-
modynamic laws go into the construction of the energy equation (2.5). It is presented
here to demonstrate the consistency of (2.5) with expectations from thermodynamics.
If our gas were not monatomic, so that the numerical coefficient in (2.4) differed from
3, we would obtain a result like (2.11), but with a different exponent for o

Pp™" = constant. . (2.12)

In this form v is known as the adiabatic indez, or the ratio of specific heats. A further
important special type of flow results from the assumption that the gas temperature
T is constant throughout the region of interest. This is called isothermal flow, and
is obviously equivalent to postulating some unspecified physical process to keep T
constant. This, in turn, means that the energy equation (2.5) is replaced in our system
describing the gas by the relation 7" = constant. Formally, this latter requirement can
be written, using the perfect gas law (2.2), as

Ppl= constant,

which has the form of (2.12) with v = 1.

2.4 Sound waves

An obvious class of solution to our gas equations is that corresponding to hydrostatic
equilibrium. In this case, in addition to the restriction to steady flow, and the absence
of losses assumed in Section 2.3 above, we take v = 0. Then the only equation
remaining to be satisfied is (2.8), which reduces to

VP =f,

together with an explicit expression for f, and the perfect gas law (2.2). Solutions
of this type are, for example, appropriate to stellar, or planetary, atmospheres in
radiative equilibrium.

Let us assume that we have such a solution, in which P and p are certain functions
of position, Py and po, and consider small perturbations about it. We set

P=R+P, p=p+p, v=v

2.4 Sound waves
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2.4 Sound waves

where all the primed quantities are assumed small, so that we can neglect second and
higher order products of them. In place of the energy equation (2.5), we assume that
the perturbations are adiabatic, or isothermal: in reality, either of these cases can
occur. Thus

P+P =K(p+p)’, K =-constant . (2.13)

with v = 2 (adiabatic) or v = 1 (isothermal). Linearizing the continuity equation (2.1)
and the Euler equation (2.3), and using the fact that VP = f, we get

op' '

— v = 2.14

ov 1

— + —VP =0. 2.15
From (2.13) P is purely a function of p, so VP’ = (dP/dp)oVp' to first order, where
the subscript zero implies that the derivative is to be evaluated for the equilibrium
solution, i.e. (dP/dp)o = dPp/dpo. Thus, (2.15) becomes

ov' 1 (dP)

— 4+ === Vo =0. 2.16

5t "o \dp ), ‘p (2.16)
Eliminating v/ from (2.16) and (2.14) by operating with V- and 9/0t respectively and
then subtracting, gives ., '

(92 pl

-é)t_2 = C§V2 I, (217)

where we have defined

¢ = (dP )1/2. (2.18)

dp
Equation (2.17) will be recognized as the wave equation, with the wave speed ¢g. It is
easy, now, to show that the other variables P’, v/ obey similar equations; this implies
that small perturbations about hydrostatic equilibrium propagate through the gas as
sound waves with speed cs. From (2.13), (2.18) we see that the sound speed cs can
have two values:

1/2 1/2 :
adiabatic : & = (%) = < 33‘3: ) x pH3, - (2.19)
H

’ 1/2 1/2
isothermal : ¢ = <£> = (—kT—> : (2.20)
' P pmig

0

The sound speeds c29, ¢, are basic quantities which can be defined locally at any
point of a gas. Note first that both 24 and ¢! are of the order of the mean thermal
speed of the ions of the gas, cf. equation (2.4). Numerically,

¢s = 10(T/10*K)? km s™* (2.21)
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where ¢ stands for either sound speed.

Since ¢; is the speed at which pressure disturbances travel through the gas, it limits
the rapidity with which the gas can respond to pressure changes. For example, if the
pressure in one part of a region of the gas of characteristic size L is suddenly changed,
the other parts of the region cannot respond to this change until a time of order I /cs,
the sound crossing time, has elapsed. Conversely, if the pressure in one part of the
region is changed on a timescale much longer than L/c; the gas has ample time to
respond by sending sound signals throughout the region, so the pressure gradient will
remain small. Thus, if we consider supersonic flow, where the gas moves with vl > cs,
then the gas cannot respond on the flow time L/[v| < L /s, 80 pressure gradients have
little effect on the flow. At the other extreme, for subsonic flow with |v| < ¢s, the gas
can adjust in less than the flow time, so to a first approximation the gas behaves as if
in hydrostatic equilibrium.

- These properties can be inferred directly from an order-of-magnitude analysis of
the terms in the Euler equation (2.3). For example, for supersonic flow we have

p(v-V)vl /L o
VP P/pL " 2

>1

and pressure gradients can be neglected in a first approximation. A very important
property of the sound speed is its dependence on the gas density (2.19). This means
that regions of higher than average density have higher than average sound speeds, a
fact which gives rise to the possibility of shock waves. In a shock the fluid quantities
change on lengthscales of the order of the mean free path A and this is represented
as a discontinuity in the fluid. Shock waves are important in physics and astrophysics
and we shall return to them in Section 3.8.

2.5 Steady, spherically symmetric accretion

Let us now attack a real accretion problem and show how all of the apparatus we
have developed in Sections 2.1-2.4 can be put to use. We consider a star of mass M
accreting spherically symmetrically from a large gas cloud. This would be a reasonable
approximation to the real situation of an isolated star accreting from the interstellar
medium, provided that the angular momentum, magnetic field strength and bulk mo-
tion of the interstellar gas with respect to the star could be neglected. For other types
of accretion flows, such as those in close binary systems and models of active galactic
nuclei; spherical symmetry is rarely a good approximation, as we shall see. Nonethe-
less, the spherical accretion problem is of very great significance for the theory, as it
introduces some important concepts which have much wider validity. Furthermore,
it is possible to give a fairly exact treatment, allowing us to gain insight into more
complicated problems. The problem of accretion of gas by a star in relative motion
with respect to the gas was first considered by Hoyle and Lyttleton (1939) and later
by Bondi and Hoyle (1944). The spherically symmetric case in a form similar to what
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2.5 Steady, spherically symmetrié accretion 15

is presented here arises when the accreting star is at rest with respect to the gas. This
case was first studied by Bondi (1952), and is referred to as Bondi accretion.

‘Let us ask what we might hope to discover by analysing this problem. First, we
should expect to be able to predict the steady accretion rate M (gs71) on to our star,
given the ambient conditions (the density p(oc) and the temperature T(00)) in the

. parts of the gas cloud far from the star and some boundary conditions at its surface.

Second, we might hope to learn how big a region of the gas cloud is influenced by
the presence of the star. These questions can be answered in a natural and physically
appealing way. In addition, we shall obtain an understanding of the relation between
the gas velocity and the local sound speed which can be carried over quite generally
0 more complicated accretion flows.

To treat the problem mathematically we take spherical polar coordinates (r,6,9)
with origin at the centre of the star. The fluid variables are independent of § and ¢
by spherical symmetry, and the gas velocity has only a radial component v, = v. We
take this to be negative, since we want to consider infall of material; v > 0 would
correspond to a stellar wind. For steady flow, the continuity equation (2.1) reduces to

(2.22)

using the standard expression for the divergence of a vector in spherical polar coordi-
nates. This integrates to 72pv = constant. Since p(—wv) is the inward flux of material,
the constant here must be related to the (constant) accretion rate M; the relation is

arr?p(—v) = M. (2.23)

Tn the Euler equation the only contribution to the external force, f, is from gravity,
and this has only a radial component

fr= "GMP/TQ
so that (2.3) becomes

dv 1dP GM
—_— — i — T . 2-
Udr + p dr + r? 0 (2.24)

We replace the energy equation (2.5) by the polytropic relation (2.12):
P = Kp”, K = constant. (2.25)

This allows us to treat both approximately adiabatic (y = —g—) and isothermal (y = 1)
accretion simultaneously. After the solution has been found, the adiabatic or isother-
mal assumption should be justified by consideration of the particular radiative cooling
and heating of the gas. For example, the adiabatic approximation will be valid if the
timescales for significant heating and cooling of the gas are long compared with the
time taken for an element of the gas to fall in. In reality, neither extreme is quite
satisfied, so we expect 1 < v < —::’: In fact, the treatment we shall give is valid for
1 <7 < 3: the extreme values require special consideration (see e.g. (2.33), (2.34)).
The interested reader may consult the article by Holzer & Axford (1970).
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Finally, we can use the perfect gaslaw (22) to give the temperature

where P(r), p(r) have been found.

The problem therefore reduces to that of integrating (2.24) with the help of (2.25)
and (2.23) and then identifying the unique solution corresponding to our accretion
problem. We shall integrate (2.24) shortly, but it is instructive to see how much
information can be extracted without explicit integration, since this technique is very
useful in other cases when analytic integration-is not possible, or not straightforward.
We write first

dP _dPdp  ,dp
dr " dpdr  “dr

Hence, the term (1/p)(dP/dr) in the Euler equation (2.24) is (c2/p)(dp/dr). But,
from the continuity equation (2.22),.
Idp 1.4, ,
pa? = v?a? (UT ) .
Therefore, (2.24) becomes
L2 ey
dr  wr?2dr = 2

which, after a little rearrangement, gives

() -2 - ()]

At first sight, we appear to have made things worse by these manipulations, since 2
is, in general, a function of r. However, the physical interpretation of ¢ as the sound
speed, plus the structure of equation (2.27), in which factors on either side can in
principle vanish, allow us to sort the possible solutions of (2.27) into distinct classes
and to pick out the unique one corresponding to our problem. First, we note that
at large distances from the star the factor [1 — (2¢3r/GM)] on the right hand side
must be negative, since ¢? approaches some finite asymptotic value c2(co) related to
the gas temperature far from the star, while r increases without limit. This means
that for large r the right hand side of (2.27) is positive. On the left hand side, the
factor d(v?)/dr must be negative, since we want the gas far from the star to be at
rest, accelerating as it approaches the star with decreasing. These two requirements

(d(v?)/dr <0, the r.h.s. of (2.27)> 0) are compatible only if at large r the gas flow is
subsonic, i.e. '

0

w2 < ¢ for large r. ‘ ' ' (2.28)

This is, of course, a very reasonable result, as the gas will have a non-zero temperature
and hence a non-zero sound speed far from the star. As the gas approaches the star,
7 decreases and the factor [1 — (2c2r/GM)] must tend to increase. It must eventually
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2.5 Steady, spherically symmetric accretion

reach zero, unless some way can be found of increasing c2 sufficiently by heating the
gas. This is very unlikely, since the factor reaches zero at a radius given by

_ GM B (TEI\ (M
Ts = 262(r0) 275x10 (104K g cm (2.29)

~ where we have used (2.21) to introduce the temperature. The order of magnitude

re 2 7.5 x 1013 cm in (2.29) is so much larger than the radius, R., of any compact
object (R, S 10° cm) that very high temperatures would be required to make rg
smaller than R.. In fact, it is clear from (2.16) and (1.7) that a gas temperature of
order Ty, is required: this can be achieved, for example, in a standing shock wave
close to the stellar surface. We shall have much to say about this possibility later omn,
but it does not enter our analysis here as it requires discontinuous jumps in p, T', P,
etc. A similar analysis of the signs in (2.27) for r < r shows that the flow must be
stipersonic near the star: '

v?> ¢ for small 7. (2.30)

The discussion above shows that the problem we are considering is not mathematically
well posed if we only give the ambient conditions at infinity. To specify the problem
correctly we need a condition at or near the stellar surface also. Here we have imposed
(2.30), which will have the effect of picking out just one solution (Type 1 below).
Without (2.30) there would be another possible solution (Type 3).

The existence of a point 7, satisfying the implicit equation (2.29) is of great im-
portance in characterizing the accretion flow. The direct mathematical consequence
is that at r = r¢ the left hand side of (2.27) must also vanish: this requires

either v2 =c? at r =rs, (2.31)
d
dr
All solutions of (2.27) can now be classified by their behaviour at rs, given by either

(2.31) or (2.32), together with their behaviour at large r; for example, (2.28). This is
very easy to see if we plot v?(r)/c2(r) against r (Fig. 2.1).

or (v¥) =0at r=rs (2.32)

From the figure it is clear that there are just six distinct families of solutions:

Type 1:  v2(rs) = c2(rs), v2—0asr— o0

(W? < c2r>rgv? > 2, <T);

Type 2 v3(rs) = c2(rs), v? —0asr—0
(W2 > c2,r > rs;v? < 2,7 >71s);

d
Type 3:  v2(rs) < c2(rs) everywhere, » (v?) =0 at rs;
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[
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Fig. 2.1. Mach number squared M? = v*(r)/c2(r) as a function of radius r /7s for spherically
symmetrical adiabatic gas flows in the gravitational field of a star. For v < 0 these are
accretion flows, while for v > 0 they are winds or ‘breezes’. The two trans-sonic solutions 1,
2 indicated by thick solid lines divide the remaining solutions into the families 3-6 described

in the text (the case shown here is v = 4/3, the integral curves are calculated and labelled
as in Holzer & Axford (1970)). -

d
Type 4:  v3(rs) > c2(r,) everywhere, I (v?) =0 at rg;
Type 5: I (v?) = 00 at v2 = 2(ry); r > 7, always;

Type 6: T (v*) = 00 at v2 = 2(ry); T < rs always:

There is just one solution for each of Types 1 and 2: these are called trans-sonic as

2.5 Steady, spherically :

they make a transition b
sonic point for these solu
of gas dynamical probler

* which is everywhere sub-

r and are double-valued
r. We exclude these last
correct solution if shocks
supersonic at large r, vi
(2.30). A solution of Tj
is unchanged for v — —
‘breeze’ solutions which
‘atmosphere’.

We are left finally witl
and is the unique solutio
us to the goal of relating

With the question of u
fact that (2.25) makes p

v? dP GA

—_— + —_—— ——

2 p T
From (2.25) we have dP -
v#1)

v Ky

PRt

But Ko7't = yP/p =

v? c? GM
2 -1 r

(The strictly isothermal (
property of our physical s
in (2.33) must be c2(c0)/
from the star. The sonic
(2.29) imply v?(rs) = 2(r
1 1
2 —_— ———
ci(rs) [2 + o
or
() = eo0) (5

We now obtain M from

M = dmr?p(—v) =




ius r/rs for spherically

For v < 0 these are

0 trans-sonic solutions 1,
families 3-6 described
are calculated and labelled

8

b

bre called trans-sonic as
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they make a transition between sub- and supersonic flow at r¢; g itself is known as the
sonic point for these solutions. The occurrence of sonic points is a quite general feature
of gas dynamical problems. Types 3 and 4 (shaded regions on Fig. 2.1) represent flow
which is everywhere sub- or supersonic. Types 5 and 6 do not cover all of the range of
r and are double-valued in the sense that there are two possible values of v? at a given
r. We exclude these last two for these reasons, although they can represent parts of a
correct solution if shocks are present. Types 2 and 4 must be excluded since they are

-supersonic at large r, violating (2.28), while Type 3 is subsonic at small 7, violating

(2.30). A solution of Type 2 with v > 0 describes a stellar wind: note that (2.27)
is unchanged for v — —wv. Solutions of Type 3 with v > 0 give the so-called stellar
‘breeze’ solutions which are everywhere subsonic; if v < 0 this is a slowly sinking
‘atmosphere’.

We are left finally with just the Type 1 solution: this has all the properties we want
and is the unique solution to our problem. The sonic point condition (2.31) will lead

s to the goal of relating the accretion rate M to the conditions at infinity.

-With the question of uniqueness settled, we now integrate (2.24) directly, using the

' fact that (2.25) makes p a function of P:

/dP GM
+

— — —— = constant.
p T

—— = constant.

But Kvp"~! = vP/p = c2, and we obtain the Bernoulli integral:
c? GM
& —,.— = constant. (2.33)
The strictly isothermal (v = 1) case gives a logarithmic integral.) From the known
!‘roperty of our physical solution (Type 1) we have v? — 0 as r — oo, so the constant
n (2.33) must be c2(00)/(7y — 1), where ¢s(c0) is the sound speed in the gas far away
m the star. The sonic point condition now relates c;(00) to cs(rs), since (2.31),
9) imply v*(rs) = 2(rs), GM/rs = 2¢2(rs), and the Bernoulli integral gives

1 1 c2(o0)
2 S IS | - A St
() [2+7—1 2} y-1

eo(rs) = eo(o0) (5 _237>1/2.

We now obtain M from (2.23):
M = 4772 p(—v) = 4712 p(rs)cs(rs)
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since M is independent of r. Using ¢2 o< p7~! we find

2/(y-1)
_ ¢es(rs)
p(rs) - p(OO) ’:CS(OO)J
Putting this and (2.35) into (2.34) gives, after a little algebra, the relation we are
looking for between M and conditions at infinity: ;

M — 7TG2M2 p(OO)

c¢(0)

2 (5—3’7)/2(’Y—1)
[ J . (2.36)

5 — 3y

Note that the dependence on +y here is rather weak: the factor [2/(5—37)]6=37/2(v-1)
varies from unity in the limit v = g to e/2 = 4.5 in the limit v = 1. For a value
7 = 1.4, which would be typical for the adiabatic index of a part of the interstellar
medium, the factor is 2.5.

Equation (2.36) shows that accretion from the interstellar medium is unlikely to be
an observable phenomenon; reasonable values would be ¢s(00) = 10 km 571, p(o0) =

10 g cm ™3, corresponding to a temperature of about 10 K and number density near
1 particle cm ™. Then (2.36) gives (with v=14)
- M\* (o)) [ _eslo0) \7
M=14x10" | — > -1 2.37
x 10 (M@> <10_24 10 km s ! &s (2:37)

From (1.46) even accreting this on to a neutron star vields L, only of the order
2% 10% erg s7%; at a typical distance of 1 kpc this gives far too low a flux to be
detected.

To complete the solution of the problem to find the run of all quantities with r we
could now get v(r) in terms of ¢;(r) from (2.35), using ¢? = vP/p x p7~1:

M M [cs(oo)r/”—”
drr?p(r)  4mrp(oo) | c(r)

Substituting this into the Bernoulli integral (2.33) gives an algebraic relation for cs(r);
the solution of this then gives p(r) and v(r). In practice, the algebraic equation
for c5(r) has fractional exponents and must be solved numerically. - However, the
main features of the r-dependence can be inferred by looking at the Bernoulli integral
(2.33). At large r the gravitational pull of the star is weak and all quantities have
their ‘ambient’ values (p(0), ¢s(00), v = 0). As one moves to smaller r, the inflow
velocity increases until (—v) reaches ¢cs(00), the sound speed at infinity. The only
term in (2.33) capable of balancing this increase is the gravity term GM/r; since cs(r)
does not greatly exceed ¢, (c0) this must occur at a radius

~. _ 2GM e (M [ 10K
= "Tacc = —CW =3x10 (M@) (m) cimi. (238)

At this point p(r) and c;(r) begin to increase above their ambient values. At the sonic
point 7 = 7 (see (2.31)) the inflow becomes supersonic and the gas is effectively in
free fall: from (2.33) v? > ¢2 implies

(=v) =
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2.5 Steady, spherically symmetric accretion

v 2 2GM/r = v
with vZ the free-fall velocity. The continuity equation (2.23) now gives
3/2
0= p(rs) (%) for r S rs.
Finally, we can, in principle, get the gas temperature, using the perfect gas law and
the polytropic relation

) (3/2)(v-1)

T2T(rs) (% for r S 7s.

However, the steady increase in T for decreasing r predicted by this equation is proba-
bly unrealistic: radiative losses must begin to cool the gas, so a better energy equation
than (2.25) is needed at this point.

The radius r,c. defined by (2.38) has a simple interpretation: at a radius r the ratio
of internal (thermal) energy to gravitational binding energy of a gas element of mass
m is

thermal energy ~ mcZ(r)
binding energy T2 GMm ” Tace

for r 2 race

since ¢s(r) ~ cs(00) for r > raee. Hence, for 7 3> rae. the gravitational pull of the
star has little effect on the gas. We call rycc the accretion radius: it gives the range
of influence of the star on the gas cloud which we sought at the outset. Note that in
terms of r the relation (2.36) giving the steady accretion rate can be rewritten as

M ~ 7735 (00) p(00). (2.39)

Dimensionally r,cc must have a form like (2.33); however, since the proper specification
of the accretion flow involves a ‘surface’ condition like (2.30) the numerical factor in
the formula for r,. is in general undetermined, and the concept of an ‘accretion radius’
is not well defined. A Type 3 solution for the same ¢s(00), p(c0) would give a smaller
accretion rate M than (2.36). If an M greater than the value (2.36) is externally
imposed (e.g. by mass exchange in a binary system) the flow must become supersonic

-near the star and must involve discontinuities (i.e. shocks).

We have treated the problem of steady spherical accretion at some length. The
main conclusions we can draw from this study and apply generally are:

“ (i) The steady accretion rate M is determined by ambient conditions at infinity
(equation (2.36)) and a ‘surface’ condition (e.g. equation (2.30)). For accretion
by isolated stars from the interstellar medium, the resulting value of M is too
low to be of much observational importance. Clearly, we must look to close
binaries to find more powerful accreting systems.

- (ii) The star’s gravitational pull seriously influences the gas’s behaviour only inside
the accretion radius racc.

(ii) A steady accretion flow with M greater than or equal to the value (2.36) must
possess a sonic point; i.e. the inflow velocity must become supersonic near the
stellar surface.
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22 Gas dynamics

The immediate consequence of point (ii) is that, since for a star (although not for
a black hole) the accreting material must eventually join the star with a very small
velocity, some way of stopping the highly supersonic accretion flow must be found.
Consideration of how this stopping process can work leads us naturally into the area
of plasma physics, which we touched on briefly at the beginning of this chapter. In
the next chapter we shall develop in more detail the plasma concepts we shall need.
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